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University of California, Berkeley
Physics 105 Fall 2000 Section 2 (Strovink)

SOLUTION TO PROBLEM SET 5
Solutions by T. Bunn and M. Strovink

Reading:
105 Notes 3.4-3.7
Hand & Finch 3.4-3.9

1.
A particle of mass m and electric charge q is situ-
ated in an alternating electric field directed along
the x axis: Ex = E0 cosωt. The particle also ex-
periences a force in the x direction proportional
to the third derivative of its x coordinate:

Fα = +α
d3x

dt3
,

where α is a positive constant. [This model gives
an approximate description of a charged particle
that scatters radiation.]

Find the amplitude and phase of the particle’s
oscillation in the steady state.
Solution:
The particle feels two forces: Felec = qE =
qE0 cosωt, and Fα = α

...
x. So its equation of

motion is
mẍ = α

...
x + qE0 e

iωt

(We can replace cosωt by eiωt because their real
parts are the same.) As usual, we solve this
kind of equation by guessing that the answer is
of the form x = Re

(
Aeiωt

)
. Then the equation

of motion becomes

−mAω2 = qE0 − iαAω3

Solve this equation for A:

A =
qE0

−mω2 + iαω3
= −qE0

ω2

m+ iαω
m2 + α2ω2

So A is a complex number of the form A =
|A| eiϕ, with amplitude and phase

|A| = qE0

ω2
√
m2 + α2ω2

, ϕ = π + arctan
(αω
m

)
.

2.
Consider an extremely underdamped oscillator
(ω0/γ ≡ Q� 1).
(a)
Suppose that the oscillator is undriven, but ini-
tially it is excited. How many oscillation periods
are required for the energy stored in the oscilla-
tor to diminish by a factor of e?
Solution:
The general solution to the undriven under-
damped oscillator is

x(t) = Be−γt/2 cos (ωγt+ β) , where

ω2
γ ≡ ω2

0 − γ
2

4

= ω2
0

(
1− 1

4Q2

)

→ ω2
0 for Q� 1 .

The total energy in the oscillator is the sum of
kinetic and potential energy terms:

E = 1
2kx

2 + 1
2mẋ

2

= 1
2mω

2
0x

2
max ,

where as usual ω2
0 ≡ k/m, and we have used

the fact that ẋ = 0 when x is at its maximum
displacement xmax. From the general solution,
xmax ∝ exp (−γt/2), so E ∝ exp (−γt). There-
fore the time τ required for E to diminish by a
factor e is τ = 1/γ. In this time, the number N
of periods is

N =
τ

2π/ωγ
≈ γ−1

2π/ω0
=
Q

2π
.

(b)
Instead suppose that the oscillator is driven at
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resonance. What is the ratio of the energy stored
in the oscillator to the work done by the driving
force in one oscillation period?
Solution:
As usual substitute x ≡ Re

(
Aeiωt

)
, and choose

to solve the complex equation. When the driving
force is F0 cosωt, this yields

−ω2A+ iγωA+ ω2
0A = F0/m .

At resonance (ω ≡ ω0),

A =
−iF0

γω0m
.

Using the arguments in part (a), the energy in
the oscillator is

E = 1
2mω

2
0x

2
max

= 1
2mω

2
0

F 2
0

γ2ω2
0m

2

=
F 2

0

2γ2m
.

To determine the energy dissipated in one pe-
riod, we integrate the work W done by the
driving force:

W =
∮
Fx dx

=
∮
Fx
dx

dt
dt

=
∮
Fxvx dt .

Using our determination of A, we know x(t) and
therefore v(t):

x(t) = Re
( −iF0

γω0m
eiω0t

)

=
F0

γω0m
sinω0t

vx(t) =
F0

γm
cosω0t .

Plugging vx(t) into the integral, and recalling
that the square of any circular function has an

average value of 1
2 over one period T ,

W =
∮
Fxvx dt =

∮
dt F0 cosω0t

F0

γm
cosω0t

=
T

2
F 2

0

γm

=
2π
2ω0

F 2
0

γm

=
π

Q

F 2
0

γ2m
.

Comparing W to E,
E

W
=
Q

2π
,

the same ratio obtained in part (a).

3.
Consider an undriven oscillator satisfying the
initial conditions x(0) = x0, ẋ(0) = 0. Find x(t)
when the oscillator is...
(a)
...slightly underdamped (ω0/γ ≡ Q = 1√

2
).

Solution:
The general solution to the undriven under-
damped oscillator is

x(t) = Be−γt/2 cos (ωγt+ β) , where

ω2
γ ≡ ω2

0 − γ
2

4

= ω2
0

(
1− 1

4Q2

)

=
ω2

0

2
when Q =

1√
2

x(t) = Be−ω0t/
√

2 cos
(ω0t√

2
+ β

)
.

Applying the boundary condition that the initial
velocity vanishes,

0 = ẋ(0) = − ω0√
2
B cosβ −B ω0√

2
sinβ

⇒ cosβ = − sinβ

β = −π
4
.

Finally, setting the initial displacement equal to
x0,

x0 = x(0) = B cosβ = B cos
(−π

4
)

B =
√
2x0 .
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Putting it all together,

x(t) =
√
2x0e

−ω0t/
√

2 cos
(ω0t√

2
− π

4
)
.

(b)
...slightly overdamped (ω0/γ ≡ Q = 6

13 ).
Solution:
The general solution to the undriven overdamped
oscillator is

x(t) = C+e
−γ+t + C−e−γ−t , where

γ± ≡ γ

2
±

√
γ2

4
− ω2

0

Q = 6
13

⇒ γ = 13
6 ω0

γ± = ω0

(
13
12 ±

√
(13
12 )

2 − 1
)

= ω0

(
13
12 ± 5

12

)
γ+ = 3

2ω0

γ− = 2
3ω0 .

Applying the boundary condition that the initial
velocity vanishes,

0 = ẋ(0) = −γ+C+ − γ−C−
= − 3

2ω0C+ − 2
3ω0C−

C+ = − 4
9C− .

Finally, setting the initial displacement equal to
x0,

x0 = x(0) = C+ + C−
=

(− 4
9 + 1

)
C−

C− = 9
5x0

C+ = − 4
5x0 .

Putting it all together,

x(t) =
x0

5

(
9 exp

(− 2
3ω0t

) − 4 exp
(− 3

2ω0t
))
.

4.
Consider a critically damped oscillator (ω0/γ ≡
Q = 1

2 ) that remains at rest at x = 0 for t < 0,
but is driven at resonance by a force Fx such that

Fx

m
= G sinω0t

for t > 0, where G is a constant. Find x(t).
[Hint: It is somewhat easier to solve this prob-
lem directly (matching boundary conditions at
t = 0) than to use a Green function.]
Solution:
For time t > 0 the equation we’re solving is of
the form

ẍ+ γẋ+ ω2
0x = G sinωt,

which we’ve solved before. The particular solu-
tion is most easily written in complex notation
as xp(t) = Re

(
Aeiωt

)
, where

A =
−iG

(ω2
0 − ω2) + iγω

.

Substituting γ = 2ω0 (critical damping) and
ω = ω0 (driven at resonance) yields

A = − G

γω0
= − G

2ω2
0

.

We need to add a homogeneous solution of the
form xh = D1e

−ω0t+D2te
−ω0t to this to make it

meet the initial conditions. The conditions are

x(0) = 0, so A+D1 = 0
ẋ(0) = 0, so −ω0D1 +D2 = 0

Therefore

D1 =
G

2ω2
0

D2 =
G

2ω0
.

Putting it all together,

x(t) =
G

2ω2
0

(
e−ω0t + ω0te

−ω0t − cosω0t
)
.

5.
Woofer design. With compact discs well es-
tablished as a recording medium, loudspeaker
distortion is the last major barrier to true sound
reproduction. A woofer in a sealed box (“acous-
tic suspension”) is the simplest type to analyze.
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The motion of the cone of mass m is governed
by the equation

m
d2x

dt2
+ b
dx

dt
+ kx = F0 cosωt ,

where F0 is constant if the amplifier output re-
sistance or the voice coil resistance is excessive
(not a typical assumption, but one we will make
here for simplicity). The average sound intensity
is proportional to the average (acceleration)2 of
the cone. The damping factor b is proportional
to the strength of the magnetic “motor” – the
magnet and voice coil assembly. The spring con-
stant k is inversely proportional to the volume
of air sealed in the box.
(a)
Try to think up a simple mechanical test that you
can perform in the showroom (when the sales-
person is looking the other way) to see whether
the cone is underdamped or overdamped.
Solution:
Just do something to displace the cone from its
equilibrium position (by pushing on it or some-
thing). If it is overdamped, it will return straight
to where it started. If it is underdamped, it will
oscillate first.
(b)
Suppose the assembly goes through resonance at
ν0 = 50 Hz with Q = 1. (These are typical spec-
ifications for a medium quality classical music
speaker.) By what factor will the sound inten-
sity vary at 25 Hz? 100 Hz?
Solution:
Remember that the resonant angular frequency
ω0 =

√
k/m. How is Q defined? If you weren’t

given both γ, the damping coefficient, and ω0,
you could measure Q from Q = ω0/∆ω, where
∆ω is the full width at half maximum of the func-
tion ω2 |A|2 (whose maximum is at ω0). In our
case, we do know γ ≡ b/m and ω0, so it is simpler
to use the definition Q = ω0/γ. (If you weren’t
given γ you could measure it from the solution
to the undriven oscillator: x(t) = e−γt/2 cosωt.)
In our case, Q = 1, so γ = ω0.

Now, the equation of motion for our speaker is

mẍ+ bẋ+ kx = F0 cosωt .

The steady-state solution must be of the form
x(t) = Re(Aeiωt), with

(−mω2 + ibω + k
)
A = F0

A =
F0

(k −mω2) + ibω
=

F0/m

(ω2 − ω2
0) + iγω

The sound intensity is proportional to the aver-
age acceleration squared, which is proportional
to ω4 |A|2. That is,

I(ω) =
Cω4

(ω2 − ω2
0)

2 + γ2ω2

=
Cω4

(ω2 − ω2
0)

2 + ω2
0ω

2
,

where C is a constant. This function is plotted
below for your amusement.

The relevant facts about it for this problem,
though, are that

I(1
2ω0)
I(ω0)

=
1
13

= 0.0769

I(2ω0)
I(ω0)

=
16
13

= 1.231 .

(c)
Sketch the effect upon smoothness of bass re-
sponse of greatly increasing the cone area (to
an inexperienced buyer, this often increases the
speaker’s apparent value). [Hint: Make reason-
able assumptions concerning the dependence of
m and k on the cone area.]
Solution:
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What does increasing the cone size do to ω0 and
γ? Well, if A is the cone area, then k ∝ A (be-
cause k ∝ F , and force is pressure times area),
and m ∝ A, so ω0 =

√
k/m is independent of A,

and γ = b/m ∝ A−1. So if we let z = A/Ainitial

be the factor by which the area is expanded,
then γ = ω0/z, and our expression for the sound
intensity becomes

I(ω) =
Cω4

(ω2 − ω2
0)

2 + γ2ω2

=
Cω4

(ω2 − ω2
0)

2 + ω2
0ω

2/z2
.

Now we can plot I(ω) for various values of z to
see how smooth the response is.

From the graph, we see that the audio response
curve gets much less smooth vs. frequency as z
increases. (The physical explanation for this is
that the Q of the oscillator goes up as the cone
size increases, so the peak is sharper.) You could
come up with all kinds of ways to make this
statement more precise. One would be to define
the “smoothness” ratio R to be I(2ω0)/I(ω0) (so
that R = 1 is the desirable state), and plot R
vs. z. By this method of measuring, you’d find
that the smoothness indeed does get worse as
the cone size increases.

6.
Obtain the Fourier series that represents the

function

F (t) = 0 (−2π
ω
< t < 0)

= F0 sinωt (0 < t <
2π
ω

) .

Solution:
Remember: Any function F (t) that repeats it-
self with period T = 2π/Ω and whose average
value is zero can be expanded in a series

F (t) =
∞∑

n=1

(fn sinnΩt+ gn cosnΩt) , where

fn =
Ω
π

∫ T

0

F (t) sinnΩt

gn =
Ω
π

∫ T

0

F (t) cosnΩt .

In our case, F (t) repeats itself with period
T = 4π/ω, so Ω = ω/2. Then

fn =
ω

2π

∫ 2π/ω

−2π/ω

F (t) sin 1
2nωt dt

=
ω

2π

∫ 2π/ω

0

F0 sinωt sin 1
2nωt dt .

The best way to do integrals like these is to
look them up, but if you’re too proud, you can
also calculate them by using the angle addition
formulæ (in reverse) to write the integrand as
a difference of two cosines. In either case, the
answer comes out to be

f2 = 1
2F0 and fn = 0 for n �= 2 .

Now on to the gn’s: The relevant integral this
time is

gn =
ω

2π

∫ 2π/ω

0

F0 sinωt cos 1
2nωt dt

=
{

0 if n is even
4

π(4−n2)F0 if n is odd

So the answer is

F (t) = 1
2F0 sinωt+

∑
n odd

4
π (4− n2)

F0 cos 1
2nωt
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7.
Consider a damped oscillator (as usual, charac-
terized by γ, ω0, and m) driven by a periodic
force F . During one period,

−2π
ω
< t <

2π
ω
,

F is taken to be equal to F (t) in problem (6.);
before and afterward, it simply repeats itself.

Find x(t) for this oscillator. You may assume
that any transient effects, due to the driving
force having been turned on at t = −∞, have
damped out.

Solution:
Expressing F (t) in terms of the Fourier series obtained in the previous problem, we need a particular
solution to the differential equation

ẍ+ γẋ+ ω2
0x =

F0

2m
sinωt+

∑
n odd

4
π(4− n2)

F0

m
cos n

2ωt .

A linear oscillator must simultaneously respond at all frequencies at which it is driven, so we seek
solutions of the form

x(t) = Re
(
Aeiωt +

∑
n odd

Bne
i
n
2 ωt

)
.

We substitute this form of x in the differential equation, and, as usual, we choose to solve the complex
version of it. To do so, on the left vs. right-hand sides, we equate the coefficients of each factor of the
form exp (iΩt), where Ω is equal either to ω or to n

2ω for any odd n. This yields the set of equations

A =
−iF0/2m

(ω2
0 − ω2) + iγω

Bn =
4

π (4− n2)
F0/m(

ω2
0 − (n

2 )
2ω2

)
+ iγ n

2ω
.

(Note that A is of the same form as in problem (4.), and that the Bn are of standard form except
for their n-dependent coefficients.) The solution is thus

x(t) = Re
( −iF0/2m
(ω2

0 − ω2) + iγω
eiωt +

∑
n odd

4
π (4− n2)

F0/m

(ω2
0 − (n

2 )
2ω2) + iγ n

2ω
ei

n
2 ωt

)
.

If you are fond of such things, you can reexpress the contents of the large parentheses as a sum of
purely real or imaginary parts, or rewrite x(t) in terms of many different cosines and phases.

8.
Derive the Green function for an overdamped os-
cillator initially at rest at the origin. [Hint: Use
the method of 105 Notes sections 3.5 and 3.6.]
Solution:
The equation for the Green function (call it Xg)
is Ẍg + γẊg + ω2

0Xg = δ(t). For t > 0 the right-
hand side is zero, so we can just write down a
solution to the homogeneous equation:

Xg = A1 e
α+t +A2 e

α−t where

α± = − 1
2γ ± 1

2

√
γ2 − 4ω2

0 ,

and A1 and A2 are constants determined by the

initial conditions. What are the initial condi-
tions? Well, Xg(0) = 0, because the oscillator
hasn’t had any time to move immediately after
the impulse, and Ẋg(0) = 1, because the im-
pulse per unit mass supplied by the δ-function
is ∆v =

∫
δ(t) dt = 1. Solve these two equations

and you get

A1 = −A2 =
1

α+ − α− =
1√

γ2 − 4ω2
0

.

So the Green function is

Xg(t) =
1√

γ2 − 4ω2
0

(
eα+t − eα−t

)
.


